

Figure 2. Upper: X-band EPR spectrum of [MoFe₃S₄(S-p- $C_6H_4Cl_4((C_3H_5)_2cat)$ ³⁻ (3a) in acetonitrile solution at ~6 K; g values at selected fields are indicated. Lower: cyclic voltammogram (100 mV/s) of $[MoFe₃S₄(S-p-C₆H₄Cl)₃((C₃H₅)₂cat)CN]³⁻$ (3b) in acetonitrile solution; **peak** potentials vs. SCE are indicated. The reduction at -1.02 **V** indicates a small amount of solvated cluster **2** formed in the redox cycle.

The foregoing results demonstrate the existence of the single clusters 3 with core oxidation levels $[MoFe_3S_4]^{2+,3+,4+}$, one of which $(3+)$ has a spin-quartet ground state,¹³ and further substantiate formulation **2** for solvated clusters. Similarities with the native Mo-Fe-S cluster of nitrogenase now include Mo EXAFS⁵ and $S = \frac{3}{2}$ spin systems^{12,14} but not Mo:Fe:S atom ratios.2 Current research is directed toward isolation of other cluster oxidation levels and an investigation of the reactions of reducible substrates with the reduced $([MoFe₃S₄]²⁺)$ forms of 2 and 3.

Acknowledgment. This research was supported by NSF Grant CHE 81-06017. X-ray and NMR equipment used in this research were obtained by NSF Grants CHE 80-00670 and CHE 80-08891.

Supplementary Material Available: A table of positional parameters (3 pages). Ordering information is given on any current masthead page.

Registry No. 2, solvent = MeCN, 80764-36-9; **3a,** 80789-40-8; **3b,** 80764-35-8; **3c,** 80764-37-0; **3d,** 80764-38-1.

- (13) The "single cluster" [MoFe₃S₄(SEt)₃Fe(cat)₃]³⁻ has been previously isolated (Wolff, T. E.; Berg, J. M.; Holm, R. H. *Inorg. Chem.* **1981, 20,** 174), but it is unsuitable for examination of single cluster electronic properties because of perturbation by the paramagnetic $Fe(cat)_3$ ³ subunit.
- (14) Rawlings, J.; Shah, V. **K.;** Chisnell, J. R.; Brill, W. J.; Zimmermann, R.; Münck, E.; Orme-Johnson, W. H. *J. Biol. Chem.* 1**978**, 253, 1001.
Huynh, B. H.; Henzl, M. T.; Christner, J. A.; Zimmermann, R.; Orme-Johnson, W. **H.;** Miinck, **E.** *Biochim. Biophys. Acta* **1980,623,** 124.

Received December 29, 1981

Thermal Elimination of Dihydrogen from (q5-CsHS)Ir(CO)H2. Formation, Structure, and Reactivity of C_s - $(\eta^5$ - $C_sH_s)$ ₃Ir₃(CO)₃

Sir:

Formation of the clusters $Cp_3Co_3(CO)_3^1$ and $Cp_3Rh_3(CO)_3^2$ $(Cp = \eta^5-C_5H_5)$ appears to proceed via generation and formal trimerization of 16-electron CpM(C0) intermediates. Current interest in the chemistry of such Cp_3M_3 clusters³ led us to consider means of generating CpIr(C0) as a possible route to $Cp_3Ir_3(CO)_3$. We now report the synthesis of $CpIr(CO)H_2$, its thermal loss of H_2 to form CpIr(CO) and thence Cp₃Ir₃- (CO) ₃, the crystal structure of the trimer, and evidence concerning a parallel pattern of reactivity between $Cp_3Ir_3(CO)$ ₃ and $CpIr(CO)H_2$.

Treatment of $CpIr(CO)Br₂⁴$ with zinc and acetic acid in methanol⁵ followed by extraction with pentane and evaporation affords $CpIr(CO)H_2$ in nearly quantitative yield as a colorless oil.⁶ CpIr(CO) H_2 is stable at room temperature in noncoordinating solvents. However, solutions prepared in acetone or tetrahydrofuran soon begin to turn dark and $CpIr(CO)H_2$ disappears completely within several days. Similar behavior is seen at higher temperatures (reflux) in cyclohexane or benzene. The major product⁷ has been isolated as a purple solid after chromatography (neutral alumina) and identified as C_s -Cp₃Ir₃(CO)₃.

The molecular structure of $Cp_3Ir_3(CO)$, is shown in Figure 1.⁹ The compound is a closed trimer of CpIr(CO) moieties, with two terminal carbonyls and a Cp group on one side of the $Ir₃$ plane and two Cp groups and one terminal carbonyl on the other side of the plane, leading to noncrystallographic *C,* molecular symmetry. The two metal-metal distances related by the mirror plane are nearly identical $(\text{Ir}(1)-\text{Ir}(2))$ 2.6693 (7) **A,** Ir(2)-Ir(3) = 2.6697 (6) **A),** whereas the third distance is slightly longer $(\text{Ir}(1)-\text{Ir}(3)) = 2.6876$ (6) Å). These values compare with 2.693 Å for $Ir_4(CO)_{12}$.¹⁰ The carbonyl ligands are nearly perpendicular to the Ir, plane, with the carbonyl on Ir(2) bent slightly toward the midpoint of the triangle (87.9 (3)^o) but the carbonyls on Ir(1) and Ir(3) bent slightly away from the center. This latter effect as well as the lengthening of the $Ir(1)-Ir(3)$ bond is presumably due to

- (1) (a) Vollhardt, **K.** P. C.; Bercaw, J. E.; Bergman, R. G. *J. Organomet. Chem.* **1975, 97,** 283. (b) Lee, W. **S.;** Brintzinger, H. H. *Ibid.* **1977, 127,** 87.
- (a) Mills, 0. **S.;** Paulus, E. F. *J. Organomet. Chem.* **1967,** *10,* 331. (b) (2) Paulus, E. F.; Fischer, E. 0.; Fritz, H. P.; Schuster-Woldan. H. *Ibid.* **1967,** *IO,* P3. (c) Paulus, E. F. *Acta Crystallogr., Sect. B* **1969,** *B25,* 2206. (d) Lawson, R. J.; Shapley, J. R. *J. Am. Chem. SOC.* **1976,** *98,* 7433.
- (3) (a) E.g., [Cp3Rh3(CO)2(µ3-CR)]⁺: Herrmann, W. A.; Plank, J.; Riedel,
D.; Ziegler, M. L.; Weidenhammer, K.; Guggolz, E.; Balbach, B. *J. Am.*
Chem. Soc. 1981, 103, 63. Dimas, P. A.; Duesler, E. N.; Lawson, R. J.; Shapley, J. R. *Ibid.* **1980, 102,** 7787. (b) **Eg,** Cp,Co,(p,-CR),: Fritch, J. R.; Vollhardt, **K.** P. C. *Angew. Chem., Int. Ed. Engl.* **1980,** *19,* 559. Yamazaki, H.; Wakatsuki, Y.; Aoki, **K.** *Chem. Lett.* **1979,** 1041.
- Rausch, M. D.; Gastinger, R. G.; Gardner, **S.** A.; Brown, R. **K.;** Wood, J. S. J. Am. Chem. Soc. 1977, 99, 7870 (prepared by the addition of Br_2 to CpIr(C₆H₅)H). We have found that the compound is formed quantitatively by the addition of Br_2 to $CpIr(CO)_2$ in CH_2Cl_2 .
- Moss, J. R.; Graham, W. **A.** *G. Inorg. Chem.* **1977,** *16,* 75.
- ¹H NMR (C₂D₆CO) δ 5.47 (s, 5 H), -16.47 (s, 2 H); IR (CH₂Cl₂) ν _{M-H} 2156 (w), *v*_{CO} 2002 (s) cm⁻¹; mass spectra (electron impact, 70 eV) *m/e* 288 (Cp¹⁹³Ir(CO)H₂)⁺.
- (7) The minor products have been identified as $Cp_4Ir_4(CO)_x$ clusters and will be reported elsewhere.
- ¹H NMR (CDCl₃, -50 °C) δ 5.54 (s, 5 H), 5.50 (s, 10 H); IR(CH₂Cl₂) ν _{CO} 1960, 1918 cm⁻¹; mass spectra *m*/*e* 858 (M⁺), 830 (M⁺ CO), 802 178.2 (2 C) v_{CO} 1960, 1918 cm ·; mass spectra *m/e* 556 (M⁻), 550 (M⁻¹ – CO), 502
(M⁺ – 2CO), 774 (M⁺ – 3CO); ¹³C NMR (CD₂Cl₂) δ 179.9 (1 C),
- Crystals of Cp₃Ir₃(CO)₃ form in space group *P*I with $a = 8.9358$ (8) Å, $b = 8.2461$ (8) Å, $c = 11.9742$ (11) Å, $\alpha = 101.73$ (1)°, $\beta = 92.98$ (1)°, and $\gamma = 98.56$ (1)°. The structure was solved and refined with (9) conventional procedures to $R = \sum ||F_o| - |F_c|| / \sum |F_o| = 0.029$, calculated for 2573 observed reflections.
- Churchill, M. R.; Hutchinson, J. P. *Inorg. Chem.* **1978, 17,** 3528.

0020-1669/82/1321-1701\$01.25/0 © 1982 American Chemical Society

Figure 1. Perspective view of the C_5 -Cp₃Ir₃(CO)₃ molecule.

nonbonded repulsions between the two nearly parallel carbonyl ligands. Note that the configuration around $Ir(1)$ (or $Ir(3)$) is that of a CpIr(CO) complex of a pseudo-ethylene Cp_2Ir_2 - $(CO)_2$ moiety. This suggests an abvious, though as yet experimentally unexamined, route for the formation and/or decomposition of C_s -Cp₃Ir₃(CO)₃.¹¹

Under conditions in which it would normally decompose, $CpIr(CO)H₂$ is stabilized by a hydrogen atmosphere. Furthermore, CpIr(CO) D_2 under an atmosphere of H_2 is transformed into $CpIr(CO)H_2$. These observations support the equilibrium shown in eq 1. The role of the coordinating

$$
Cplr(CO)H_2 \rightleftarrows Cplr(CO) + H_2 \tag{1}
$$

solvent in the decomposition of $CpIr(CO)H_2$ may be seen as a trapping agent to form a "lightly stabilized" species CpIr- $(CO)S$,¹² which facilitates H₂ loss from solution and ultimate formation of $Cp_3Ir_3(CO)_3$. The reactive intermediate CpIr-(CO) or CpIr(C0)S is trapped by stronger donors to produce the stable, isolable compounds CpIr(CO)L (L = PPh₃,¹³ PPhMe₂,¹⁴ CN-t-Bu,¹⁴ CO) in good yields. CpIr(CO)₂, which is known to be basic,¹⁵ also works well as a trapping agent and forms $\text{Cp}_2\text{Ir}_2(\text{CO})_3$.¹⁶ Furthermore, decomposition of $CpIr(CO)H_2$ in the presence of benzaldehyde produces benzene and $CpIr(CO)$ ₂ (as well as $Cp_3Ir_3(CO)$ ₃), presumably via $CpIr(CO)(C(O)Ph)H$ and $CpIr(CO)(Ph)H.⁴$

Upon treatment of $Cp_3Ir_3(CO)$, with PPhMe₂ at increasingly higher temperatures, no reaction occurs until ca. 140 °C (refluxing xylene). The only product is the mononuclear

- A similar structural feature is apparent for C_r -Cp₃Rh₃(CO)₃, except that the Cp₂Rh₂(CO)₂ moiety is doubly carbonyl bridged.^{2c} For theoretical analysis of related compounds see: Hofmann, P.; Angew. Chem., Int.
Ed. Engl. 1979, 18, 554. Pinhas, A. R.; Albright, T. A.; Hofmann, P.;
Hoffmann, R. Helv. Chim. Acta 1980, 63, 29. For the addition of unsaturated metal fragments to (η^5 -C₃Me₅)₂M₂(CO)₂ (M = Co, Rh) *see:* Cirjak, L. M.; Huang, J.-S.; Zhu, Z.-H.; Dahl, L. F. *J. Am. Chem.* **SOC. 1980,** *102,* 6673. Boag, N. M.; Green, M.; Mills, R. M.; Pain, G. N.; Stone, F. G. A.; Woodward, P. J. *Chem.* **Soc.,** *Chem. Commun.* **1980,** 1171.
- (12) A similar solvent effect was noted for the elimination of H_2 from *H₂Co*[P(OMe)₃]₄⁺: Muetterties, E. L.; Watson, P. L. J. Am. Chem.
Soc. 1978, 100, 6978.
Graham, W. A. G.; Oliver, A. J. Inorg. Chem. 1970, 9, 2653.
CpIr(CO)(PPhMe₂): IR (CH₃Cl₂) $\nu_{\rm CO}$ 1915 cm⁻¹; ¹H N
-
- (CO)(CN-t-Bu): IR (CH₂Cl₂) $ν_{CO}$ 1939 cm⁻¹; ¹H NMR (CDCl₃) δ 5.33 (s, 5 **H),** 1.30 **(s,** 9 H).
- Hart-Davis, A. J.; Graham, W. A. G. *Inorg. Chem.* **1970,** *9,* 2658.
- Treatment of CpIr(CO)₂ with Me₃NO-2H₂O also appears to generate CpIr(CO); but in this case, Cp₂Ir₂(CO)₃ is the major product: ¹H 1 C), 172 (s, 2 C); IR $(C_6H_{12}) \nu_{CO}$ 1966, 1796 cm⁻¹; mass spectra m/e
600 (M*) 572 (M – CO), 544 (M – 2CO), 516 (M – 3CO). Cp₂Ir₂-
(CO), appears to be isostructural with Cp₂Rh₂(CO)₃: Mills, O. S.;
Nice, J. NMR (CDCl₃, 30 °C) δ 5.57 (s); ¹³C NMR (CH₂Cl₂, –50 °C) 206 (s,

derivative CpIr(CO)PPhMe₂. Similarly, at the same temperature in the presence of excess ¹³CO, only CpIr(¹³CO), is formed¹⁷ and recovered $Cp_3Ir_3(CO)_3$ is unlabeled. This preference for metal-metal bond scission over carbonyl substitution in $Cp_3Ir_3(CO)$, parallels the preference for dihydrogen elimination over carbonyl loss from $CpIr(CO)H_2$ (see I). In

contrast the electronically equivalent pair of molecules Os_{3} - $(CO)_{12}$ and $H_2Os(CO)_4$ (see II) show preferential dissociation of carbon monoxide.¹⁸ The difference in behavior may imply greater relative stability for CpIr(CO) than for $Os(CO)₄$.¹⁹ Nevertheless, despite the thermal stability of $Cp_3Ir_3(CO)_3$, reactions analogous to the extensive chemistry developed by direct substitution of $\text{Os}_3(\text{CO})_{12}^{20}$ will not likely be accessible directly from $Cp_3Ir_3(CO)_3$. Alternative means of developing $Cp₃Ir₃$ chemistry are being investigated.

Acknowledgment. This research was supported at the University of Illinois by grants from the National Science Foundation (CHE 78-17911, 81-00140, and DMR 77-23999, 80-20250).

Registry No. Cp₃Ir₃(CO)₃, 80630-37-1; CpIr(CO)H₂, 78829-47-7; $CpIr(CO)_2$, 12192-96-0; $CpIr(CO)(PPh_3)$, 32612-68-3; CpIr- $(CO)(PPhMe₂), 80630-38-2; CpIr(CO)(t-BuNC), 80630-39-3;$ $Cp_2Ir_2(CO)$ ₃, 80630-40-6; CpIr(CO)Br₂, 64867-78-3.

Supplementary Material Available: A listing of positional and thermal parameters for C_1 -Cp₃Ir₃(CO)₃ (1 page). Ordering information is given on any current masthead page.

- (17) At 140 "C CpIr(CO), should undergo relatively rapid exchange with I3CO: Schuster, H. G.; Basolo, F. *J. Am. Chem.* **SOC. 1966,88,** 1657.
- (18) Norton, J. R. *Acc. Chem. Res.* **1979,** *12,* 139. Whether the ease of H_2 loss from CpIr(CO) H_2 is due to more electron density at the metal center is not clear. CpIr(PPh₃)H₂ reacts with D₂ and CO more rapidly than does CpIr(CO)H₂. However, under similar conditions (η ⁵-C₅Me₅)Ir(CO)H₂ is much less reactive (Dimas, P.; Shapley, J. R., unpublished results).
- (20) See especially the work of Deeming and co-workers reviewed by: Humphries, A. P.; Kaesz, H. D. *Prog. Inorg. Chem.* **1979,** *25,* 145.

Department of Chemistry University of Colorado Boulder, Colorado 80302 **Cortlandt** *G.* **Pierpont**

Received October 23, 1981

Kinetics of Carbon Monoxide Activation: Reactions of Methoxide and of Hydroxide with Ruthenium and Iron Carbonyls'

Sir:

Nucleophilic activation of coordinated CO is a key feature of proposed mechanisms for homogeneously catalyzed **pro**cesses such as the water-gas shift reaction² (WGSR) and the

⁽¹⁾ Reported in part at the Symposium on Catalytic Activation of Carbon Monoxide, Second Chemical Conference of the North American Continent (180th National Meeting of the American Chemical Society), Las Vegas, NV, Aug 1980.